Package org.apache.mahout.cf.taste.recommender

Examples of org.apache.mahout.cf.taste.recommender.Recommender.recommend()


                    {0.2, 0.3, 0.3, 0.6},
                    {0.4, 0.4, 0.5, 0.9},
            });

    Recommender recommender = new SlopeOneRecommender(dataModel);
    List<RecommendedItem> originalRecommended = recommender.recommend(1, 2);
    List<RecommendedItem> rescoredRecommended =
        recommender.recommend(1, 2, new ReversingRescorer<Long>());
    assertNotNull(originalRecommended);
    assertNotNull(rescoredRecommended);
    assertEquals(2, originalRecommended.size());
View Full Code Here


            });

    Recommender recommender = new SlopeOneRecommender(dataModel);
    List<RecommendedItem> originalRecommended = recommender.recommend(1, 2);
    List<RecommendedItem> rescoredRecommended =
        recommender.recommend(1, 2, new ReversingRescorer<Long>());
    assertNotNull(originalRecommended);
    assertNotNull(rescoredRecommended);
    assertEquals(2, originalRecommended.size());
    assertEquals(2, rescoredRecommended.size());
    assertEquals(originalRecommended.get(0).getItemID(), rescoredRecommended.get(1).getItemID());
View Full Code Here

                    {0.2, 0.3, 0.3},
                    {0.4, 0.3, 0.5},
            });

    Recommender recommender = new SlopeOneRecommender(dataModel);
    List<RecommendedItem> recommended = recommender.recommend(1, 1);
    assertNotNull(recommended);
    assertEquals(1, recommended.size());
    RecommendedItem firstRecommended = recommended.get(0);
    // item one should be recommended because it has a greater rating/score
    assertEquals(2, firstRecommended.getItemID());
View Full Code Here

          } catch (NoSuchUserException nsee) {
            continue; // Oops we excluded all prefs for the user -- just move on
          }

          int intersectionSize = 0;
          List<RecommendedItem> recommendedItems = recommender.recommend(id, at, rescorer);
          for (RecommendedItem recommendedItem : recommendedItems) {
            if (relevantItems.contains(recommendedItem.getItem())) {
              intersectionSize++;
            }
          }
View Full Code Here

    users.add(getUser("test3", 0.4, 0.9));
    DataModel dataModel = new GenericDataModel(users);
    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> recommended = recommender.recommend("test1", 1);
    assertNotNull(recommended);
    assertEquals(0, recommended.size());
    recommender.refresh(null);
    assertNotNull(recommended);
    assertEquals(0, recommended.size());
View Full Code Here

    users.add(getUser("test5", 0.2, 0.3, 0.6, 0.7, 0.1, 0.2));
    DataModel dataModel = new GenericDataModel(users);
    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> fewRecommended = recommender.recommend("test1", 2);
    List<RecommendedItem> moreRecommended = recommender.recommend("test1", 4);
    for (int i = 0; i < fewRecommended.size(); i++) {
      assertEquals(fewRecommended.get(i).getItem(), moreRecommended.get(i).getItem());
    }
    recommender.refresh(null);
View Full Code Here

    DataModel dataModel = new GenericDataModel(users);
    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> fewRecommended = recommender.recommend("test1", 2);
    List<RecommendedItem> moreRecommended = recommender.recommend("test1", 4);
    for (int i = 0; i < fewRecommended.size(); i++) {
      assertEquals(fewRecommended.get(i).getItem(), moreRecommended.get(i).getItem());
    }
    recommender.refresh(null);
    for (int i = 0; i < fewRecommended.size(); i++) {
View Full Code Here

    users.add(getUser("test3", 0.4, 0.4, 0.5, 0.9));
    DataModel dataModel = new GenericDataModel(users);
    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> originalRecommended = recommender.recommend("test1", 2);
    List<RecommendedItem> rescoredRecommended =
            recommender.recommend("test1", 2, new ReversingRescorer<Item>());
    assertNotNull(originalRecommended);
    assertNotNull(rescoredRecommended);
    assertEquals(2, originalRecommended.size());
View Full Code Here

    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> originalRecommended = recommender.recommend("test1", 2);
    List<RecommendedItem> rescoredRecommended =
            recommender.recommend("test1", 2, new ReversingRescorer<Item>());
    assertNotNull(originalRecommended);
    assertNotNull(rescoredRecommended);
    assertEquals(2, originalRecommended.size());
    assertEquals(2, rescoredRecommended.size());
    assertEquals(originalRecommended.get(0).getItem(), rescoredRecommended.get(1).getItem());
View Full Code Here

    users.add(getUser("test4", 0.7, 0.3, 0.8));
    DataModel dataModel = new GenericDataModel(users);
    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> recommended = recommender.recommend("test1", 1);
    assertNotNull(recommended);
    assertEquals(1, recommended.size());
    RecommendedItem firstRecommended = recommended.get(0);
    // item one should be recommended because it has a greater rating/score
    assertEquals(new GenericItem<String>("2"), firstRecommended.getItem());
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.