users.add(getUser("test3", 0.4, 0.4, 0.5, 0.9));
DataModel dataModel = new GenericDataModel(users);
UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
List<RecommendedItem> originalRecommended = recommender.recommend("test1", 2);
List<RecommendedItem> rescoredRecommended =
recommender.recommend("test1", 2, new ReversingRescorer<Item>());
assertNotNull(originalRecommended);
assertNotNull(rescoredRecommended);
assertEquals(2, originalRecommended.size());