Package org.encog.ml.train

Examples of org.encog.ml.train.MLTrain.addStrategy()


    final MLTrain trainMain = new Backpropagation(network, trainingSet,0.000001, 0.0);

    ((Propagation)trainMain).setNumThreads(1);
    final StopTrainingStrategy stop = new StopTrainingStrategy();
    trainMain.addStrategy(new Greedy());
    trainMain.addStrategy(new HybridStrategy(trainAlt));
    trainMain.addStrategy(stop);

    int epoch = 0;
    while (!stop.shouldStop()) {
View Full Code Here


    final MLTrain trainMain = new Backpropagation(network, trainingSet,0.000001, 0.0);

    ((Propagation)trainMain).setNumThreads(1);
    final StopTrainingStrategy stop = new StopTrainingStrategy();
    trainMain.addStrategy(new Greedy());
    trainMain.addStrategy(new HybridStrategy(trainAlt));
    trainMain.addStrategy(stop);

    int epoch = 0;
    while (!stop.shouldStop()) {
      trainMain.iteration();
View Full Code Here

    ((Propagation)trainMain).setNumThreads(1);
    final StopTrainingStrategy stop = new StopTrainingStrategy();
    trainMain.addStrategy(new Greedy());
    trainMain.addStrategy(new HybridStrategy(trainAlt));
    trainMain.addStrategy(stop);

    int epoch = 0;
    while (!stop.shouldStop()) {
      trainMain.iteration();
      System.out.println("Training " + what + ", Epoch #" + epoch
View Full Code Here

        XORSQL.SQL_PWD);
   
    // train the neural network
    final MLTrain train = new ResilientPropagation(network, trainingSet);
    // reset if improve is less than 1% over 5 cycles
    train.addStrategy(new RequiredImprovementStrategy(5));
   
    int epoch = 1;

    do {
      train.iteration();
View Full Code Here

    // third, create the trainer
    MLTrainFactory trainFactory = new MLTrainFactory()
    MLTrain train = trainFactory.create(method,dataSet,trainerName,trainerArgs);       
    // reset if improve is less than 1% over 5 cycles
    if( method instanceof MLResettable && !(train instanceof ManhattanPropagation) ) {
      train.addStrategy(new RequiredImprovementStrategy(500));
    }

    // fourth, train and evaluate.
    EncogUtility.trainToError(train, 0.01);
    EncogUtility.evaluate((MLRegression)method, dataSet);
View Full Code Here

    final MLTrain trainMain = new Backpropagation(network, trainingSet,0.000001, 0.0);

    ((Propagation)trainMain).setNumThreads(1);
    final StopTrainingStrategy stop = new StopTrainingStrategy();
    trainMain.addStrategy(new Greedy());
    trainMain.addStrategy(new HybridStrategy(trainAlt));
    trainMain.addStrategy(stop);

    int epoch = 0;
    while (!stop.shouldStop()) {
View Full Code Here

    final MLTrain trainMain = new Backpropagation(network, trainingSet,0.000001, 0.0);

    ((Propagation)trainMain).setNumThreads(1);
    final StopTrainingStrategy stop = new StopTrainingStrategy();
    trainMain.addStrategy(new Greedy());
    trainMain.addStrategy(new HybridStrategy(trainAlt));
    trainMain.addStrategy(stop);

    int epoch = 0;
    while (!stop.shouldStop()) {
      trainMain.iteration();
View Full Code Here

    ((Propagation)trainMain).setNumThreads(1);
    final StopTrainingStrategy stop = new StopTrainingStrategy();
    trainMain.addStrategy(new Greedy());
    trainMain.addStrategy(new HybridStrategy(trainAlt));
    trainMain.addStrategy(stop);

    int epoch = 0;
    while (!stop.shouldStop()) {
      trainMain.iteration();
      System.out.println("Training " + what + ", Epoch #" + epoch
View Full Code Here

   
    // train the neural network
    final MLTrain train = new ResilientPropagation(network, trainingSet);
    // reset if improve is less than 1% over 5 cycles
    train.addStrategy(new RequiredImprovementStrategy(5));

    EncogUtility.trainToError(train, 0.01);
   
    EncogUtility.evaluate(network, trainingSet);
View Full Code Here

    MLTrain train = this.createTrainer(method, fold.getTraining());

    if (train.getImplementationType() == TrainingImplementationType.Iterative) {
      SimpleEarlyStoppingStrategy earlyStop = new SimpleEarlyStoppingStrategy(
          fold.getValidation());
      train.addStrategy(earlyStop);

      StringBuilder line = new StringBuilder();
      while (!train.isTrainingDone()) {
        train.iteration();
        line.setLength(0);
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.