Package org.apache.mahout.classifier

Examples of org.apache.mahout.classifier.ResultAnalyzer.addInstance()


          }
         
          CategoryHits[] hits //<co id="co.mlt.cat"/>
            = categorizer.categorize(new StringReader(parts[1]));
          ClassifierResult result = hits.length > 0 ? hits[0] : UNKNOWN;
          resultAnalyzer.addInstance(parts[0], result); //<co id="co.mlt.an"/>
        }
       
        in.close();
      }
View Full Code Here


            TimingStatistics.Call outercall = totalStatistics.newCall();
            ClassifierResult classifiedLabel = classifier.classifyDocument(strings.toArray(new String[strings
                .size()]), params.get("defaultCat"));
            call.end();
            outercall.end();
            boolean correct = resultAnalyzer.addInstance(correctLabel, classifiedLabel);
            if (verbose) {
              // We have one document per line
              log.info("Line Number: {} Line(30): {} Expected Label: {} Classified Label: {} Correct: {}",
                new Object[] {lineNum, line.length() > 30 ? line.substring(0, 30) : line, correctLabel,
                              classifiedLabel.getLabel(), correct,});
View Full Code Here

      assertEquals(3, classifier.classifyDocument(document.toArray(new String[document.size()]),
        params.get("defaultCat"), 100).length);
      ClassifierResult result = classifier.classifyDocument(document.toArray(new String[document.size()]), params
          .get("defaultCat"));
      assertEquals(entry[0], result.getLabel());
      resultAnalyzer.addInstance(entry[0], result);
    }
    int[][] matrix = resultAnalyzer.getConfusionMatrix().getConfusionMatrix();
    for (int i = 0; i < 3; i++) {
      for (int j = 0; j < 3; j++) {
        if (i == j)
View Full Code Here

      assertEquals(3, classifier.classifyDocument(document.toArray(new String[document.size()]),
        params.get("defaultCat"), 100).length);
      ClassifierResult result = classifier.classifyDocument(document.toArray(new String[document.size()]), params
          .get("defaultCat"));
      assertEquals(entry[0], result.getLabel());
      resultAnalyzer.addInstance(entry[0], result);
    }
    int[][] matrix = resultAnalyzer.getConfusionMatrix().getConfusionMatrix();
    for (int i = 0; i < 3; i++) {
      for (int j = 0; j < 3; j++) {
        if (i == j)
View Full Code Here

            TimingStatistics.Call outercall = totalStatistics.newCall();
            ClassifierResult classifiedLabel = classifier.classifyDocument(strings.toArray(new String[strings
                .size()]), params.get("defaultCat"));
            call.end();
            outercall.end();
            boolean correct = resultAnalyzer.addInstance(correctLabel, classifiedLabel);
            if (verbose) {
              // We have one document per line
              log.info("Line Number: {} Line(30): {} Expected Label: {} Classified Label: {} Correct: {}",
                new Object[] {lineNum, line.length() > 30 ? line.substring(0, 30) : line, correctLabel,
                              classifiedLabel.getLabel(), correct,});
View Full Code Here

      assertEquals(3, classifier.classifyDocument(document.toArray(new String[document.size()]),
        params.get("defaultCat"), 100).length);
      ClassifierResult result = classifier.classifyDocument(document.toArray(new String[document.size()]), params
          .get("defaultCat"));
      assertEquals(entry[0], result.getLabel());
      resultAnalyzer.addInstance(entry[0], result);
    }
    int[][] matrix = resultAnalyzer.getConfusionMatrix().getConfusionMatrix();
    for (int i = 0; i < 3; i++) {
      for (int j = 0; j < 3; j++) {
        assertEquals(i == j ? 4 : 0, matrix[i][j]);
View Full Code Here

      assertEquals(3, classifier.classifyDocument(document.toArray(new String[document.size()]),
        params.get("defaultCat"), 100).length);
      ClassifierResult result = classifier.classifyDocument(document.toArray(new String[document.size()]), params
          .get("defaultCat"));
      assertEquals(entry[0], result.getLabel());
      resultAnalyzer.addInstance(entry[0], result);
    }
    int[][] matrix = resultAnalyzer.getConfusionMatrix().getConfusionMatrix();
    for (int i = 0; i < 3; i++) {
      for (int j = 0; j < 3; j++) {
        assertEquals(i == j ? 4 : 0, matrix[i][j]);
View Full Code Here

      Vector result = classifier.classifyFull(input);
      int cat = result.maxValueIndex();
      double score = result.maxValue();
      double ll = classifier.logLikelihood(actual, input);
      ClassifierResult cr = new ClassifierResult(newsGroups.values().get(cat), score, ll);
      ra.addInstance(newsGroups.values().get(actual), cr);

    }
    output.printf("%s\n\n", ra.toString());
  }
View Full Code Here

            TimingStatistics.Call outercall = totalStatistics.newCall();
            ClassifierResult classifiedLabel = classifier.classifyDocument(strings.toArray(new String[strings
                .size()]), params.get("defaultCat"));
            call.end();
            outercall.end();
            boolean correct = resultAnalyzer.addInstance(correctLabel, classifiedLabel);
            if (verbose) {
              // We have one document per line
              log.info("Line Number: {} Line(30): {} Expected Label: {} Classified Label: {} Correct: {}",
                new Object[] {lineNum, line.length() > 30 ? line.substring(0, 30) : line, correctLabel,
                              classifiedLabel.getLabel(), correct,});
View Full Code Here

      assertEquals(3, classifier.classifyDocument(document.toArray(new String[document.size()]),
        params.get("defaultCat"), 100).length);
      ClassifierResult result = classifier.classifyDocument(document.toArray(new String[document.size()]), params
          .get("defaultCat"));
      assertEquals(entry[0], result.getLabel());
      resultAnalyzer.addInstance(entry[0], result);
    }
    int[][] matrix = resultAnalyzer.getConfusionMatrix().getConfusionMatrix();
    for (int i = 0; i < 3; i++) {
      for (int j = 0; j < 3; j++) {
        assertEquals(i == j ? 4 : 0, matrix[i][j]);
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.