Package ca.nengo.model

Examples of ca.nengo.model.Network.addProjection()


    NEFEnsembleFactory ef = new NEFEnsembleFactoryImpl();
    int n = 300;
    NEFEnsemble pre = ef.make("pre", n, 2);
    pre.addDecodedTermination("input", MU.uniform(2, 1, 1), .005f, false);
    network.addNode(pre);
    network.addProjection(input.getOrigin(FunctionInput.ORIGIN_NAME), pre.getTermination("input"));
    NEFEnsemble post = ef.make("post", n, 2);
    network.addNode(post);
    post.addDecodedTermination("input", MU.I(2), .01f, false);
    Projection p = network.addProjection(pre.getOrigin(NEFEnsemble.X), post.getTermination("input"));
View Full Code Here


    network.addNode(pre);
    network.addProjection(input.getOrigin(FunctionInput.ORIGIN_NAME), pre.getTermination("input"));
    NEFEnsemble post = ef.make("post", n, 2);
    network.addNode(post);
    post.addDecodedTermination("input", MU.I(2), .01f, false);
    Projection p = network.addProjection(pre.getOrigin(NEFEnsemble.X), post.getTermination("input"));

    DecodedOrigin o = (DecodedOrigin) pre.getOrigin(NEFEnsemble.X);
    DecodedTermination t = (DecodedTermination) post.getTermination("input");
    float[][] directWeights = MU.prod(post.getEncoders(), MU.prod(t.getTransform(), MU.transpose(o.getDecoders())));
    System.out.println("Direct weights: " + MU.min(directWeights) + " to " + MU.max(directWeights));
View Full Code Here

    NEFEnsemble ensemble = ef.make("ensemble", 100, 1);
    ensemble.addDecodedTermination("input", MU.I(1), .005f, false);
    ensemble.collectSpikes(true);
    network.addNode(ensemble);
   
    network.addProjection(input.getOrigin(FunctionInput.ORIGIN_NAME), ensemble.getTermination("input"));
    network.run(0, 2);
   
    SpikePattern unsorted = ensemble.getSpikePattern();
    SpikePattern sorted = DataUtils.sort(unsorted, ensemble);
   
View Full Code Here

            Network network = new NetworkImpl();
            network.addNode(ensemble);
            FunctionInput input = new FunctionInput("input", new Function[]{new SineFunction(3)}, Units.UNK);
            network.addNode(input);
            network.addProjection(input.getOrigin(FunctionInput.ORIGIN_NAME), ensemble.getTermination("input"));

            network.setMode(SimulationMode.RATE);
            Probe rates = network.getSimulator().addProbe("test", "rate", true);
            network.run(0, 2);
            //          Plotter.plot(rates.getData(), .05f, "rates");
View Full Code Here

   
    float tau = .05f;
   
    Termination interm = integrator.addDecodedTermination("input", new float[][]{new float[]{tau}}, tau, false);
//    Termination interm = integrator.addDecodedTermination("input", new float[][]{new float[]{1f}}, tau);
    network.addProjection(input.getOrigin(FunctionInput.ORIGIN_NAME), interm);
   
    Termination fbterm = integrator.addDecodedTermination("feedback", new float[][]{new float[]{1f}}, tau, false);
    network.addProjection(integrator.getOrigin(NEFEnsemble.X), fbterm);
   
    //System.out.println("Network creation: " + (System.currentTimeMillis() - start));
View Full Code Here

    Termination interm = integrator.addDecodedTermination("input", new float[][]{new float[]{tau}}, tau, false);
//    Termination interm = integrator.addDecodedTermination("input", new float[][]{new float[]{1f}}, tau);
    network.addProjection(input.getOrigin(FunctionInput.ORIGIN_NAME), interm);
   
    Termination fbterm = integrator.addDecodedTermination("feedback", new float[][]{new float[]{1f}}, tau, false);
    network.addProjection(integrator.getOrigin(NEFEnsemble.X), fbterm);
   
    //System.out.println("Network creation: " + (System.currentTimeMillis() - start));
    return network;
  }
   
View Full Code Here

//    Plotter.plot(biasedWeights[0], "some biased weights");
//    Plotter.plot(weights[1], "some more weights");
   
//    Plotter.plot(bt[0].getBiasEncoders(), "bias decoders");
   
    network.addProjection(input.getOrigin(FunctionInput.ORIGIN_NAME), source.getTermination("input"));
    network.addProjection(source.getOrigin(NEFEnsemble.X), dest.getTermination("source"));
//*    network.addProjection(bo, bo.getInterneurons().getTermination("source"));
//*    network.addProjection(bo, bt[0]);
//*    network.addProjection(bo.getInterneurons().getOrigin(NEFEnsemble.X), bt[1]);
//    network.addProjection(zero.getOrigin(FunctionInput.ORIGIN_NAME), bt[1]);
View Full Code Here

//    Plotter.plot(weights[1], "some more weights");
   
//    Plotter.plot(bt[0].getBiasEncoders(), "bias decoders");
   
    network.addProjection(input.getOrigin(FunctionInput.ORIGIN_NAME), source.getTermination("input"));
    network.addProjection(source.getOrigin(NEFEnsemble.X), dest.getTermination("source"));
//*    network.addProjection(bo, bo.getInterneurons().getTermination("source"));
//*    network.addProjection(bo, bt[0]);
//*    network.addProjection(bo.getInterneurons().getOrigin(NEFEnsemble.X), bt[1]);
//    network.addProjection(zero.getOrigin(FunctionInput.ORIGIN_NAME), bt[1]);
   
View Full Code Here

   
    NEFEnsemble post = ef.make("post", 200, 1, "nefe_post", false);
//    DecodedTermination baseTermination = (DecodedTermination) post.addDecodedTermination("pre", MU.I(1), tauPSC, false);
    network.addNode(post);
   
    network.addProjection(input.getOrigin(FunctionInput.ORIGIN_NAME), pre.getTermination("input"));
    Projection projection = network.addProjection(pre.getOrigin(NEFEnsemble.X), post.getTermination("pre"));
   
    Probe pPost = network.getSimulator().addProbe("post", NEFEnsemble.X, true);
    network.run(0, 2);
    TimeSeries ideal = pPost.getData();
View Full Code Here

    NEFEnsemble post = ef.make("post", 200, 1, "nefe_post", false);
//    DecodedTermination baseTermination = (DecodedTermination) post.addDecodedTermination("pre", MU.I(1), tauPSC, false);
    network.addNode(post);
   
    network.addProjection(input.getOrigin(FunctionInput.ORIGIN_NAME), pre.getTermination("input"));
    Projection projection = network.addProjection(pre.getOrigin(NEFEnsemble.X), post.getTermination("pre"));
   
    Probe pPost = network.getSimulator().addProbe("post", NEFEnsemble.X, true);
    network.run(0, 2);
    TimeSeries ideal = pPost.getData();
    Plotter.plot(pPost.getData(), .005f, "mixed weights result");   
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.